Structure Theorem for B(1,2) s - Near Subtraction Semigroups

^{1.}V.LOKANAYAKI, ^{2.}V.MAHALAKSHMI and ^{3.}S.USHA DEVI

¹P.G.Mathematics, A.P.C.Mahalaxmi college for women, Thoothukudi,

lokanayakimani@rediff.com

²PG and Research Department of Mathematics,

A.P.C.Mahalaxmi college for women ,Thoothukudi,

maha.krishna86@gmail.com

³Assistant Professor of Mathematics, Sri Parasakthi college for women, Courtallam,

ushadevinathan@gmail.com

Abstract: In this paper, we introduce the concept of B (1,2) \overline{s} - Near Subtraction Semigroups and give the structure theorem for the same. By x we mean a zero-symmetric near subtraction semigroups. Define x to be a $p_k(p'_k)$ near subtraction semigroups if $a^k X = aXa(Xa^k = aXa)$ for all $a \in X$ and a near subtraction semigroups x is said to be a $p_k(m,n)(p'_k(m,n))$ near substraction semigroups if $a^k X = a^m Xa^n$ ($Xa^k = a^m Xa^n$) for all $a \in X$. Motivated by these concept we introduce B(1,2) near subtraction semigroups and their generalization and similarities. A near subtraction semigroups X is said to be a B(1,2) near subtraction semigroups is the right (left) X-subalgebra of near subtraction semigroups X generated by 'a'.

Keywords: Left permutable, \overline{s} -near subtraction semigroups, $B_k(B'_k)$ near subtraction semigroups, B(1,2) near subtraction semigroups.

1.Introduction

B.M. Schein [10] considered system of the form (X;0;), where X is set of functions closed under the composition "0" of functions (and hence (X;0) is a function semigroups) and the set theoretic subtraction "\" (and hence (X;) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroups is isomorphic to a difference semigroups of invertible function B.Zelinka [11] discussed a problem proposed by B.M.Schein concerning the structure of multiplication in a subtraction semigroups. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. For basic definition one may refer to Pilz[8]. Motivated by the study of B(1,2) near subtraction

semigroups in "A Study on Regularities in Near - ring" by S.Jayalakshmi .We introduced new concepts "B(1,2) near subtraction semigroups".

2. Preliminary

Definition :2.1

A non empty set X together with two binary operation '--' and '•' is said to be \overline{s} - near subtraction semigroups if it satisfies the following

- i) (X;-) is a subtraction algebra.
- ii) (X;•) is a semigroups

iii) x(y-z) = xy - xz and (x - y)z =

xz - yz for every $x, y, z \in X$

A near subtraction semigroups X is said to have **property**(α) if aX is a subalgebra of (X,-) for every a \in X.

Definition:2.3

A near subtraction semigroups X is called a **generalized near-field** if for each $a \in X$ there exists unique $b \in X$ such that a=abaand b=bab.

Theorem :2.4

Let X be a near subtraction semigroups . Then the following are equivalent.

i) X is a GNF

ii) X is a regular and each idempotent is central

iii) X is regular and sub commutative

Lemma:2.5

If X is a K(1,2) near subtraction semigroups, $E \subseteq C(X)$

Remark :2.6

If X is a s-near subtraction semigroups with property(α), then $\langle a \rangle_r = aX$ and $\langle a \rangle_l = Xa$, for all $a \in X$.

Lemma:2.7

Let X be a zero –symmetric near subtraction semigroups without non-zero nilpotent elements. Then ab=0 implies ba=0.

Remark:2.8

Whenever a zero-symmetric near subtraction semigroups contains no nonzero nilpotent elements in view of above lemma2.7,X has IFP.

Theorem:2.9

Let X be a \overline{s} - near substraction semigroup with property (α). If X is a B(1,2) near subtraction semigroups , then $M_1 \cap M_2 = M_1M_2$ for any two left x-subalgebra M_1 and M_2 of X.

Corollary:2.10

Let X be a B(1,2) \overline{s} -near subtraction semigroups with property(α). Then X is strongly regular.

Corollary:2.11

Let X be a B(1,2) \overline{s} - near subtraction semigroups with property(α). Then X is regular.

3. Structure Theorem for B(1,2) \overline{s} -Near Subtraction Semigroups

In this section first we study certain properties involving structure theorem for B(1,2) in the class of near subtraction semigroups.

Definition:3.1

We say that a near subtraction semigroups X has the property B(m,n), if there exist positive integers m,n such that $< a >_r^m X = X < a >_l^n$, for all a in X.

Example:3.2

Let $X = \{0,a,b,1\}$ in which "-" and "•" are defined by,

—	0	а	b	1		•	0	а	b	1	
0	0	0	0	0		0	0	0	0	0	
а	а	0	а	0		а	0	а	0	а	
b	b	b	0	0		b	0	0	b	b	
1	1	b	а	0		1	0	а	b	1	
One can check the $< 0 >_r = < 0 >_l = \{0\}$											
$< a >_r = < a >_l = \{0, a\} \qquad , \ < a >_r =$											
$< b >_l = \{0, b\}$, $< 1 >_r = < 1 >_l =$											
$\{0, a, b, 1\}$ and so this X is B(m,n) near											
subtraction semigroups, for all positive											
integer m and n.											

Proposition:3.3

© 2019 JETIR February 2019, Volume 6, Issue 2

Let X be a \overline{s} -near subtraction semigroups .Then X is a B (1,2) near subtraction semigroups with property(α) if and only if X is a K(1,2) near subtraction semigroups. **Proof:**

Assume that X is a B(1,2) near subtraction semigroups with property(α) .By corollary2.11,X is regular and so, for $a \in$ X, a=axa , for some $x \in X.Now aX=$ $axaX \subseteq aXXX \subseteq aXX = \langle a \rangle_r X$ $=X < a >_{I}^{2} = XXaXa \subseteq Xa$ ie, $aX \subseteq Xa$. Similarly $Xa \subseteq aX$ and so aX = Xa ie, X is a sub commutative. Since X is regular and sub commutative ,by Theorem 2.4, X is regular and $E \subseteq C(X)$. Let $X_1 \in aX$. Then for $y \in X$, $X_1 = ay = axay = a(xay) = ay(xaxa)$ =ayxxaa=(ay x^2a^2) $\in Xa^2$.ie, aX \subseteq Xa^2 . Trivially $Xa^2 \subseteq Xa = aX$. Thus aX = Xa^2 , for all a in X i.e., X is a K(1,2) near subtraction semigroups .conversely, Let X be a K (1,2) near subtraction semigroups.

Since X is a \overline{s} - near subtraction semigroups $a \in aX = Xa^2$.ie, X is strongly regular and so X is regular. Since X is a K(1,2) near subtraction semigroups, by Lemma2.5, $E \subseteq C(X)$. Then by Theorem2.4 ,X is regular and sub commutative .In the review of Remark2.6 $< a >_r X = aXX = XaX = XXa = XXaxa \in$ XXaXa =X $\langle a \rangle_l^2$.ie, $\langle a \rangle_r X \subseteq$ $X < a >_{I}^{2}$. Also $X < a >_{I}^{2} = XXaXa \subseteq$ $XXa = XaX = aXX = \langle a \rangle_r X$. ie, $X < a >_{l}^{2} \subseteq \langle a \rangle_{r} X$. These two imply that $\langle a \rangle_r X = X \langle a \rangle_l^2$.ie, X is a B(1,2) near subtraction semigroups.

Proposition:3.4

Let X be a \overline{s} -near subtraction semigroups with property (α). Then X is a B(1,2) near subtraction semigroups if and only if X is a GNF.

Proof:

Assume that X is a GNF. Now for $a \in X$, $\langle a \rangle_r X = aXX = axaXX \in aXaXX =$ $XXaXa = X < a >_{I}^{2}$.(ie) $< a >_{r} X \subseteq$ $X < a >_{l}^{2}$.Similarly $X < a >_{l}^{2} =$ $XXaXa \subseteq XXa = XaX = aXX =$ $\langle a \rangle_r X$.(ie) $X < a >_l^2 \subseteq <$ $a >_r X$.From these, we get that < $a >_r X = X < a >_l^2$.(ie) X is a B(1,2) near subtraction semigroups. Conversely, assume that X is a B(1,2) near subtraction semigroups .Since X is a \overline{s} -near subtraction semigroups with property (α) and by Corollary2.11, X is regular. By Theorem 2.4, X is a K(1,2) near subtraction semigroups. Again by Lemma2.5 , $E \subseteq$ C(X). X is GNF.

Proposition:3.5

Let X be a B(1,2) \overline{s} - near subtraction semigroups with property(α) and let A and B be any two left X -subalgebra of X. Then we have the following :

- i. $\sqrt{A} = A$
- ii. $A \cap B = AB$
- iii. $A^2 = A$
- iv. If $A \subset B$ then AB = A
- v. $A \cap XB = AB$
- vi. If A is proper, then each element of A is a zero divisor

©	2019	JETIR	February	2019,	Volume 6,	Issue 2
---	------	-------	----------	-------	-----------	---------

vii. A is a completely semiprime ideal of X.

Proof:

i) For $x \in \sqrt{A}$, there exists some positive integer k such that $x^k \in A$. Since x is a B(1,2) \overline{s} -near subtraction semigroups with property(α). By Corollary2.10, X is strongly regular. If $x \in X$, then $x=ax^2$, for some $a \in X$. This implies $x=ax^2 = (ax)x =$ $a(ax^2)x = a^2x^3 = \dots = a^{k-1}x^k \in XA \subseteq$ A .(ie)x $\in A$.Thus $\sqrt{A} \subseteq A$ obviously $A \subset \sqrt{A}$ and so $A = \sqrt{A}$ ii) Since X is a \overline{s} -near subtraction semigroups with property(α), by the Theorem 2.9, $AB = A \cap B$ iii) Taking B=A in (ii) we get $A=A^2$ iv) Suppose that $A \subset B$. Then $A \cap B = A$ and (ii) gives A=AB v) $A \cap XB \subset A \cap B$ and so $A \cap XB \subset$.Also $AB = A \cap B \subset$ AB (by(ii)) A and $AB \subset XB$. Therefore $AB \subset A \cap$ *XB*. Hence $AB = A \cap XB$ vi) By the Remark2.8, X has the IFP. Then the concept of left zero -divisors, right zero-divisors zero-divisors and are equivalent in X. Thus we need only to prove that A^* consists of only zerodivisors. Let $a \in A^*$ by (iii) for the principal left x-subalgebra Xa, Xa= $(Xa)^2$ =XaXa Consequently, for any $x \in X$, there exists $y,z \in X$ such that xa=yaza. (ie)(x-yaz)a=0. Similarly (yaz-x)a=0. If a is not a zerodivisor, then x-yaz=0 and yaz-x=0. This

hypothesis that A is proper. Thus $a \in A^*$. Hence 'a' is a zero-divisor.

vii) Let $a^2 \in A.X$ has strong IFP. So axa \in A By Corollary2.11 X is regular. Then $a \in$ A . Hence A is completely semi prime.

Proposition:3.6

Let X be a \overline{s} - near subtraction semigroups with property(α). Then X is a B(m,n) near subtraction semigroups, for all positive integer m,n if and only if X is a B(1,2) near subtraction semigroups.

Proof:

Assume that X is a B(1,2) near subtraction semigroups. By Proposition3.3,X is a GNF. Therefore by Theorem2.4. X is regular and $E \subseteq C(X)$.Let $a \in X$, here $\langle a \rangle_r^m X = \langle a \rangle_r \langle a \rangle_r^{m-1} \subseteq \langle$ $a \rangle_r X = X \langle a \rangle_l^2 \subseteq X \langle a \rangle_l Xa =$ $X \langle a \rangle_l Xaxa \subseteq Xxa \subseteq X(xa)^n \in$ $X(Xa)^n = X \langle a \rangle_l^n$. Similary $X \langle$ $a \rangle_l^n = X \langle a \rangle_l^n$. Similary $X \langle$ $a \rangle_l^n = X \langle a \rangle_l^{n-2} \langle a \rangle_l^2 \in X \langle a \rangle_l^2 =$ $\langle a \rangle_r X \subseteq aXX = axaXX \in axX =$ $(ax)^m X \in (aX)^m X = \langle a \rangle_r^m X ie., X \langle$ $a \rangle_l^n \subseteq \langle a \rangle_r^m$. So $\langle a \rangle_r^m X =$ $X \langle a \rangle_l^n$ and hence X is B(m,n) near subtraction semigroups, for all positive integer m,n. Converse part is trivial.

© 2019 JETIR February 2019, Volume 6, Issue 2	www.jetir.org
Keterences	
[1] J. C. Abbott, Sets, Lattices, and	Math. Bohem. 120 (1995
Boolean Algebras, Allyn and Bacon, Inc.,	
Boston,	
Mass.1969.	
[2] P. Dheena and G. Satheesh Kumar, On	
strongly regular near-subtraction	
semigroups,	
Commun. Korean Math. Soc. 22	
(2007), no. 3, 323–330.	
[3] Jayalakshmi.S A Study on Regularities	
in near rings, Ph.D., thesis, Manonmaniam	
Sundaranar University, 2003	
[4] Y. B. Jun and H. S. Kim, On ideals in	
subtraction algebras, Sci. Math. Jpn. 65	
(2007),no. 1, 129-134.	
[5] Y. B. Jun, H. S. Kim, and E. H. Roh,	
Ideal theory of subtraction algebras, Sci.	
Math.Jpn. 61 (2005), no. 3, 459-464.	
[6] Y. B. Jun and K. H. Kim, Prime and	
irreducible ideals in subtraction algebras,	
Ital. J.	
Pure Appl. Math.	
[7] S.Maharasi, V.Mahalakshmi, Strongly	
regular and Bi-ideals of Near-Subtrtaction	
Semigroup, IJMS Vol.12, No 1-29	
(January-June 2013), pp. 97-102.	
[8] Pilz Gunter, <i>Near-rings</i> , North	
Holland, Amsterdam, 1983.	
[9] S. Seyadali Fathima, k(r,m) near	
subtraction semigroups, International	
Journal of Algebra,	
Vol. 5, 2011, no. 17, 827 - 834	
[10]B. M. Schein, Difference semigroups,	
Comm. Algebra 20 (1992), no. 8, 2153-	
2169.	

(ISSN-2349-5162) ction semigroups,

5), no. 4, 445-447.